wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(n)=nk=1cosec1(k2+1)(k2+2k+2). Then the value of limn12f(n)π is

Open in App
Solution

f(n)=nk=1cosec1(k2+1)(k2+2k+2)

Let θ=cosec1(k2+1)(k2+2k+2), θ(0,π2]
cosec2θ=(k2+1)(k2+2k+2)cosec2θ=k4+2k3+2k2+k2+2k+2cosec2θ=(k2+k+1)2+1
cot2θ=(k2+k+1)2
cotθ=k2+k+1 (θ(0,π2])
tanθ=1k2+k+1tanθ=(k+1)k1+(k+1)k
θ=tan1[(k+1)k1+(k+1)k]θ=tan1(k+1)tan1(k)

Thus, the required sum of n terms of the given series is
f(n)=tan12tan11 +tan13tan12 . . . +tan1(n+1)tan1n

f(n)=tan1(n+1)tan11
f(n)=tan1(n+1)π4

limn12f(n)π
=12πlimn(tan1(n+1)π4)
=12π(π2π4)
=3


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon