f(n)=n∑k=1cosec−1√(k2+1)(k2+2k+2)
Let θ=cosec−1√(k2+1)(k2+2k+2), θ∈(0,π2]
⇒cosec2θ=(k2+1)(k2+2k+2)⇒cosec2θ=k4+2k3+2k2+k2+2k+2⇒cosec2θ=(k2+k+1)2+1
⇒cot2θ=(k2+k+1)2
⇒cotθ=k2+k+1 (∵θ∈(0,π2])
⇒tanθ=1k2+k+1⇒tanθ=(k+1)−k1+(k+1)k
⇒θ=tan−1[(k+1)−k1+(k+1)k]⇒θ=tan−1(k+1)−tan−1(k)
Thus, the required sum of n terms of the given series is
f(n)=tan−12−tan−11 +tan−13−tan−12 . . . +tan−1(n+1)−tan−1n
⇒f(n)=tan−1(n+1)−tan−11
⇒f(n)=tan−1(n+1)−π4
limn→∞12f(n)π
=12πlimn→∞(tan−1(n+1)−π4)
=12π(π2−π4)
=3