wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f : NN be a function defined as f (x)=9x2+6x-5. Show that f : NS, where S is the range of f, is invertible. find the inverse of f and hence find f -1(43) and f -1(163).

Open in App
Solution

We have,

f : NN is a function defined as f (x) = 9x2 + 6x - 5.

Let y = f (x) = 9x2 + 6x - 5

y=9x2+6x-5y=9x2+6x+1-1-5y=9x2+6x+1-6y=3x+12-6y+6=3x+12

y+6=3x+1 yNy+6-1=3xx=y+6-13gy=y+6-13 Let x=gy

Now,

fogy=fgy=fy+6-13=9y+6-132+6y+6-13-5=9y+6-2y+6+19+2y+6-1-5=y+6-2y+6+1+2y+6-2-5=y=IY, Identity function

gofx=gfx=g9x2+6x-5=9x2+6x-5+6-13=9x2+6x+1-13=3x+12-13=3x+1-13=3x3=x=IX, Identity function

Since, fog(y) and gof(x) are identity function.

Thus, f is invertible.

So, f-1x=gx=x+6-13.

Now,

f -1(43) = 43+6-13=49-13=7-13=63=2

And f -1(163) = 163+6-13=169-13=13-13=123=4

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon