Let ∫(x)=y
y=4x2+12x+15
4x2+12x+(15−y)=0
x=−12±√144−16(15−y)8
=−12±√16(9−15+y)8
=−12±4√y−68∫:N→s
soy∈sy∈ range of
=−3±√y−68
As x∈n
x=−3+√y−62
Now ∫(x)=∫(x2)
⇒4x12+12x1+15=4x22+12x2+15
⇒4(x12−x22)+12(x1−x2)=0
⇒x1=x2 or x1+x2+3=0
So x1=x2 as x1+x2+3≠0
∴fisonerow,\& henceinvertibleandf(x)=−3+√y−62