Calculate g:S→N
Let f(x)=y
y=4x2+12x+15
4x2+12x+15−y=0
x=−b±√b2−4ac2a
Putting values,
x=−12±√122−4(4)(15−y)2(4)
x=−12±√144−16(15−y8
=−12±√16(9−15−y)8
=−12±√16(y−6)8
=−12±√16√y−68
=−12±√42√y−68
=−12±4√y−68
=4[−3±√y−6]8
=−3±√y−62
So, x=−3+√y−62 or −3−√y−62
As x ∈ N,x is a positive real number
x can't be equal to −3−√y−62
Hence, x=−3+√y−62
Let g(y)=−3+√y−62, where g:S→N
Solve to prove gof=x=IN
gof(x)=g(f(x))
⇒gof(x)=g(4x2+12x+15)
⇒gof(x)=−3+√4x2+12x+15−162
⇒gof(x)=−3+√4x2+12x+92
⇒gof(x)=−3√(2x)2+32+2(2x)×32
⇒gof(x)=−3+√(2x+3)22
⇒gof(x)=−3+2x+32
⇒gof(x)=2x2=x
Hence, gof=x=IN.
Solve for prove fog=y=Iy.
fog(x)=f(g(x))
⇒fog(x)=f(−3+√y−62)
⇒fog(x)=4(−3+√y−62)2+12(−3+√y−62)+15
⇒fog(x)=4(−3+√y−6)24+6(−3+√y−6+15
⇒fog(x)=(−3+√y−6)2−18+6√y−6+15
⇒fog(x)=(−3)2+(√y−6)2−6√y−6−18+6√(6+y)+15
⇒fog(x)=9+y−6−18+15
⇒fog(x)=y
Hence, fog=y=Is
So, gof=IN & fog=Is.
⇒f is invertible. and inverse of f(g(y)=−3+√y−62