wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f:NR be a function defined as f(x)=4x2+12x+15. Show that f:NS, where S is the range of f, is invertible. Find the inverse of f.

Open in App
Solution

Calculate g:SN
Let f(x)=y
y=4x2+12x+15
4x2+12x+15y=0
x=b±b24ac2a
Putting values,
x=12±1224(4)(15y)2(4)
x=12±14416(15y8
=12±16(915y)8
=12±16(y6)8
=12±16y68
=12±42y68
=12±4y68
=4[3±y6]8
=3±y62
So, x=3+y62 or 3y62
As x N,x is a positive real number
x can't be equal to 3y62
Hence, x=3+y62
Let g(y)=3+y62, where g:SN

Solve to prove gof=x=IN
gof(x)=g(f(x))
gof(x)=g(4x2+12x+15)
gof(x)=3+4x2+12x+15162
gof(x)=3+4x2+12x+92
gof(x)=3(2x)2+32+2(2x)×32
gof(x)=3+(2x+3)22
gof(x)=3+2x+32
gof(x)=2x2=x
Hence, gof=x=IN.

Solve for prove fog=y=Iy.
fog(x)=f(g(x))
fog(x)=f(3+y62)
fog(x)=4(3+y62)2+12(3+y62)+15
fog(x)=4(3+y6)24+6(3+y6+15
fog(x)=(3+y6)218+6y6+15
fog(x)=(3)2+(y6)26y618+6(6+y)+15
fog(x)=9+y618+15
fog(x)=y
Hence, fog=y=Is
So, gof=IN & fog=Is.
f is invertible. and inverse of f(g(y)=3+y62

flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon