The correct option is D 2006
f(1)+2f(2)+…+nf(n)=n(n+1)f(n) for n≥2
…[1]
Replacing n by n+1, we get
f(1)+2f(2)+…+nf(n)+(n+1)f(n+1)=(n+1)(n+2)f(n+1)
…[2]
From [2]−[1], we get
(n+1)f(n+1)=(n+1)(n+2)f(n+1)−nf(n)
⇒f(n+1)=(n+2)f(n+1)−nf(n)
⇒(n+1)f(n+1)=nf(n)
Putting n=2,3,4,…, we get
2f(2)=3f(3)=4f(4)=…=nf(n)
From [1],
f(1)+(n−1)nf(n)=n(n+1)f(n)
⇒f(1)=2nf(n)
⇒f(n)=f(1)2n=12n
f(1003)=12006
∴K=2006