Let f:N→R be such that f(1)=1 and f(1)+2f(2)+3f(3)+...+nf(n)=n(n+1)f(n), for all n∈N,n≥2, where N is the set of natural numbers and R is the set of real numbers. Then , the value of f(500) is
We have, f:N→R such that f(1)=1
And f(1)+2f(2)+3f(3)++nf(n)=n(n+1)f(n),∀n≥2
Clearly, f(1)+2f(2)=2(2+1)f(2)
⇒f(1)=6f(2)−2f(2)
⇒f(1)=4f(2)
⇒f(2)=f(1)4=14
Similarly, f(1)+2f(2)+3f(3)=3(3+1)f(3)
⇒1+12+3f(3)=12f(3)
⇒9f(3)=32⇒f(3)=16
and f(1)+2f(2)+3f(3)+4f(4)=4(5)f(4)
⇒1+12+12=16f(4)
⇒f(4)=216=18
In general, f(n)=12n
∴f(500)=11000