Let f:N→Y be a function defined as f(x)=4x+3, where Y={y∈N:y=4x+3,x∈N}. Show that f is invertible and its inverse is?
Let f:R−{−43}→R be a function defined as f(x)=4x3x+4,x≠−43. The inverse of f is the map g: Range f→R−{−43} is given by (a)g(y)=3y3−4y(b)g(y)=4y4−3y(c)g(y)=4y3−4y(d)g(y)=3y4−3y
Letbe a function defined as. The inverse of f is map g: Range
(A) (B)
(C) (D)