Let fn(θ)=tanθ2(1+secθ)(1+sec2θ)(1+sec4θ).....(1+sec2nθ), then-
fn(θ)=tanθ2(1+secθ)(1+sec2θ)(1+sec4θ)...(1+sec2nθ)=sinθ2cosθ2(cosθ+1cosθ)(cos2θ+1cos2θ)(cos4θ+1cos4θ)...(cos2nθ+1cos2nθ)=sinθ2cosθ2⎛⎜ ⎜ ⎜⎝2cos2θ2cosθ⎞⎟ ⎟ ⎟⎠(2cos2θcos2θ)(2cos22θcos4θ)...(2cos22n−1θcos2nθ)=2n+1sinθ2cosθ2cosθcos2θ...cos2n−2θcos2nθ=sin2nθcos2nθ=tan2nθf2(π16)=tan4π16=1f3(π32)=tan8π32=1f4(π64)=tan16π64=1f5(π128)=tan32π128=1