Let f:R→R be a differentiable function and f(1)=4,then the value of limx→1∫4f(x)2t(x-1)dt is:
8f'(1)
4f'(1)
2f'(1)
f'(1)
Solving the integral:
I=limx→1∫4f(x)2t(x-1)dt=limx→1t2x-14f(x)=limx→1f(x)2-16100form,ApplyingL'sHsopitalrule=limx→12f(x).f'(x)1=2f(1)f'(1)=8f'(1)
Therefore, the correct answer is Option (A).