It is given that the function f:R→R is Signum function that is defined as,
f( x )={ 1, x>0 0, x=0 −1, x<0
And g:R→R is the Greatest Integer Function defined by,
g( x )=[ x ]
Consider that x∈( 0,1 ], then,
[ x ]=1 if x=1 and [ x ]=0 if 0<x<1
Now,
fοg( x )=f( g( x ) ) =f( [ x ] ) ={ f( 1 ), if x=1 f( 0 ), if x∈( 0,1 ) ={ 1, if x=1 0, if x∈( 0,1 )
Also,
gof( x )=g( f( x ) ) =g( 1 ) =[ 1 ] =1
It can be observed that when x∈( 0,1 ), fog( x )=0 and gof( x )=1.
Therefore, fog and gof do not coincide in ( 0,1 ].