The correct option is B [x−72]1/3
Given, f:R→R,g:R→R such that
f(x)=2x−3,g(x)=x3+5
It is a bijective function.
∴f−1(x) and g−1(x) exist.
Let y=f(x)=2x−3⇒2x=y+3
⇒x=y+32⇒f−1(x)=x+32
Again, let y=g(x)=x3+5
⇒x3=y−5⇒x=(y−5)1/3
∴g−1(x)=(x−5)1/3
Now, (fog)−1(x)=(g−1of−1)(x)=g−1(f−1(x))
=g−1(x+32)=[x+32−5]=[x−72]1/3.