f(x)=1ex+2e−x=exe2x+2f1(x)=(e2x+2)ex−2e2x.ex(e2x+2)2f1(x)=0e2x=2⇒e2x+2=2e2x⇒ex=√2Maximumf(x)=√24=12√20<f(x)≤12√2∀xϵR
Since 0<f(x)≤12√2or,0<13<12√2
For sum CϵR
f(c)=13
Statement 1 is true
Statement 2 is true
Statement 2 is correct explanation of statement 1