The correct option is B 0
f(x)=2f(x2)+f(x4)=x2
∴f(x2)−2f(x4)+f(x8)=(x2)2
f(x4)−2f(x8)+f(x16)=(x4)2
......................................................................................................................
..........................................................................................................................
f(x2n)−2f(x2n+1)+f(x2n+2)=(x2n)2
Adding, we get
f(x)=f(x2)−f(x2n+1)+f(x2n+2)
=x2(1+122+...+122n)
As n→∞, we get f(x)−f(x2)=4x23
Repeating the same procedure again, we get
f(x)−f(0)=16x29
Hence
f′(x)=32x9
∴f′(0)=0