The correct option is A 0 (Zero)
f(x)=x∫0f(t)dt ⋯(1)
Differentiate the above equation, ddxf(x)=ddxx∫0f(t)dt
Using Newton-Leibnitz's rule, we get
f′(x)=f(x)×1−0=f(x)
⇒f(x)=Aex where A is constant.
From (1), we get
f(0)=0⇒A=0
⇒f(x)=0, ∀ x∈R
∴f(loge5)=0