The correct option is
C −9Substitute x=3x,y=0 in f(x+y2)=2+f(x)+f(y)3, we get
f(3x+03)=2+f(3x)+f(0)3⇒f(x)=2+f(3x)+f(0)3 ...(1)
Substitute x=y=0
f(0)=2+f(0)+f(0)3⇒3f(0)=2+2f(0)⇒f(0)=2 ....(2)
From (1)
f(x)=2+f(3x)+23⇒3f(x)=f(3x)+4 ...(3)
Now f′(x)=limh→0f(x+h)−f(x)h=limh→0f(3x+3h3)−f(x)h
=limh→0⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩2+f(3x)+f(3h)3−f(x)h⎫⎪
⎪
⎪
⎪⎬⎪
⎪
⎪
⎪⎭=limh→0[2+f(3x)+f(3h)−3f(x)3h]
=limh→0[2+3f(x)−4+f(3h)−3f(x)3h]
f′(x)=limh→0[f(3h)−23h]
Since f(x) is differentiable ∀x;limh→0f(3h)=2
⇒f(0)=2⇒f′(x)=limh→03f′(3h)3=f′(0)=k (say)
⇒f′(x)=k⇒f(x)=kx+c
f′(x)=k⇒f′(2)=k
But f′(2)=2⇒k=2
∴f(x)=2x+c
Also f(0)=2⇒c=2
∴f(x)=2x+2
g(x)=x4−f(|x|)2−6=x4−(2|x|2+2)−6=x4−2|x|2−8
=|x|4−2|x|2−8=(|x|2−4)(|x|2+2)
∴g(x)=0
⇒|x|2=4 or |x|2=−2
⇒|x|2=4(∵|x|≥0)
⇒|x|=±2(∵|x|≠−2)
⇒|x|=2⇒x=±2
∴ Solution of equation g(x)=0 are 2 and −2
⇒ there are two solutions of equation g(x)=0
∵k is the value of solutions as well as number of solutions
⇒k=2
∴g(k−1)=g(2−1)=g(1)
∴g(k−1)=g(1)=(1)4−2|1|2−8=1−2−8=−9