Let f:R→R be a differentiable function satisfying the condition f(x+y3)=2+f(x)+f(y)3∀ real values of x & y and f′(2)=2 If h(x)=|f(|x|)−5|∀x∈R then the function h(x) is non differentiable at number of points
A
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is D3
f(x+y3)=2+f(x)+f(y)3→1
Put x=y=0
f(0)=2+2f(0)3
⇒f(0)=2
Differentiate 1 partially w.r.t. x
f(x+y3)(13)=f′(x)3
⇒f′(x+y3)=f′(x)
Put x=0
f′(y3)=f′(0)=k
⇒f(y3)=ky+C
f(y)=3ky+C(k≠0)
We know that f(0)=2
⇒2=0+C⇒c=2
⇒f(y)=3ky+2
⇒f(x)=3kx+2
f′(x)=3k
Given f′(2)=2
⇒2=3k⇒k=23
⇒f(x)=2x+2,f(|x|)=2|x|+2
h(x)=|f(|x|)−5|
h′(x)=|f(|x|)−5|f(|x|)−5×f′(x)×|x|x
h(x) will be non differentiable when h′(x) is not defined