Let f:R→R be a differentiable function with f(0)=1 and satisfying the equation f(x+y)=f(x)f′(y)+f′(x)f(y) for all x,y∈R. Then, the value of loge(f(4)) is
Open in App
Solution
P(x,y):f(x+y)=f(x)f′(y)+f′(x)f(y) P(0,0):f(0)=f(0)f′(0)+f′(0)f(0)⇒f′(0)=12(∵f(0)=1) P(x,0):f(x)=f(x)f′(0)+f′(x)f(0)⇒f′(x)=12f(x)⇒exponential function Hence, f(x)=e12x ⇒logef(x)=logee12x=12x ⇒logef(4)=42=2