Let f:R→R be differentiable at x=0. If f(0) and f′(0)=2, then the value of limx→01x[f(x)+f(2x)+f(3x)+...+f(2015x)] is
Given, f(0)=0 and f′(0)=2
Therefore, limx→01x[f(x)+f(2x)+f(3x)+...+f(2015x)]
=limx→0[f(x)+2f(2x)+3f(3x)+...+2015f(2015x)]1 ....[Applying L Hospitals rule]
=2+2×2+3×2+...+2015×20161
=2[1+2+3+...+2015]
=2(2015)(2015+1)2=2×2015×20162
=2015×2016