Let f:R→R be such that f(1)=3 and f′(1)=6, Then limx→0(f(1+x)f(1))1x is equal to
1
e12
e2
e3
limx→0(f(1+x)f(1))1x
=elimx→01x[ln(f(1+x))−ln(f(1))]
=elimx→01f(1+x)×f′(1+x) [Applying L'Hospital Rule]
=ef′(1)f(1)
=e63=e2