Given, f(x) : R→R be the Signum Function defined as
f(x)=⎧⎪⎨⎪⎩1,x>00,x=0 and g:(x)=[x]−1,x<0
Now,
gof=g(f(x))=[f(x)]
In (0,1],f(x)=1
So, gof=[1]=1fog=f(g(x))=f([x])
=⎧⎪⎨⎪⎩1,[x]>00,[x]=0−1[x]<0
fog=f(g(x))=f([x])=⎧⎪⎨⎪⎩1,[x]>00,[x]=0−1[x]<0
f([x])=⎧⎪⎨⎪⎩1,x≥10,0≤x<1−1,x<0
As, x∈(0,1]
fog=f([x])={0,0<x<11,x=1
gof=1fog={0,0<x<11,x=1
In gof, there is only one value, & in fog, there are two values.
Hence, fog and gof dop not coincide in (0,1].