Let f:R→R,f(x)=1−x−4x3, then the number of integral value(s) of x∈[0,4] satisfying the inequality 4f3(x)+f(1−2x)+f(x)<1 is
Open in App
Solution
f′(x)=−1−12x2<0 f(x) is decreasing function f(f(x))=1−f(x)−4f3(x) Inequality reduces to f(f(x))>f(1−2x) ⇒f(x)<1−2x ⇒1−x−4x3<1−2x ⇒4x3−x>0 ⇒x(2x−1)(2x+1)>0
x∈(−12,0)∪(12,∞) So, the number of integral values is 4.