Let f:R→R:f(x)=x2 and g:R→R:g(x)=2x+1. Find
(i) (f+g)(x)
(ii) (f−g)(x)
(iii) (fg)(x)
(iv) (fg)(x)
Here, dom (f)=R and dom (g)=R
∴dom (f)∩dom (g)=(R∩R)=R
(i) (f+g):R→R is given by
(f+g)(x)=f(x)+g(x)=x2+(2x+1)=(x+1)2
(ii) (f−g):R→R is given by
(f−g)(x)=f(x)−g(x)=x2−(2x+1)=(x2−2x−1)
(iii) (fg):R→R is given by
(fg)(x)=f(x).g(x)=x2.(2x+1)=(2x3+x2)
(iv) fg(x):R→R is given by
{x:g(x)=0}={x:2x+1=0}={−12}
∴dom(fg)=R∩R−{−12}=R−{−12}
The function fg:R−{−12}→R is given by
(fg)(x)=f(x)g(x)=x22x+1, x≠−12