Let f:R+→R, where R+ is the set of all positive real numbers, be such that f(x)=logex, Determine
i) The image set of the domain of f
ii) {x:f(x)=−2}
iii) Whether f(xy)=f(x)+f(y) holds.
We have,
f=R+→R
and f(x)=logex……(i)
(i) Now,
f=R+→R
∴ the image set of the domain of f = R
(ii) Now,
{x:f(x)=−2}
⇒f(x)=−2……(ii)
Using equation (i) and equation (ii) we get
logex=−2
⇒x=e−2 [∵logab=c⇒b=ac]
∴{x:f(x)=−2}={e−2}
(iii) Now,
f(xy)=loge(xy) [f(x)=logex]
=logex+logey [∵logmn=logm+logn]
f(x)+f(y)
∴f(xy)=f(x)+f(y)
Yes, f(xy)=f(x)+f(y)