Let f:R→R be defined as f(x)=e-xsinx. If F:0,1R→is a differentiable function such that F(x)=∫0xf(t)dt, then the value of ∫01F'(x)+f(x)exdx lies in the interval.
330360,331360
327360,329360
331360,334360
335360,336360
Determine the value of ∫01F'(x)+f(x)exdx
We have, f(x)=e-xsinx and F(x)=∫0xf(t)dt
Differentiating using liebnitz rule:
F'(x)=f(x)
Now,
∫01F'(x)+f(x)exdxI=∫01f(x)+f(x)exdxI=∫012f(x)exdxI=∫012e-xsinxexdxI=∫012sinxdxI=2-cosx10I=-2cos1-cos0I=21-cos1I=21-1-12!+14!-16!...I=1-24!+26!....∴1-24!<I<1-24!+26!⇒1-224<I<1-224+2360⇒1112<I<331360⇒330360<I<331360
Hence, the correct answer is Option (A).
Let f:R→R be a differentiable function and f(1)=4,then the value of limx→1∫4f(x)2t(x-1)dt is:
Let f:12,1→R (the set of all real numbers) be a positive non-constant and differentiable function such that f'x<2fx and f12=1. Then the value of ∫0.51fxdx lies in the interval