Let f:R→R be defined by f(x)=⎧⎨⎩2x, x>3x2, 1<x≤33x, x≤1 Then f(−1)+f(2)+f(4) is
Let f: R→R be defined byf(x)=⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩α+sin[x]2if x>0 2if x=0β+[sin x−xx3]if x<0where [y] denotes the integral part of y. If f is continuous at x=0, then β−α=