Let f:S→S where S=(0,∞) be a twice differentiable function such that f(x+1)=xf(x). If g:S→R be defined as g(x)=logef(x), then the value of |g′′(5)−g′′(1)| is equal to :
A
187144
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
197144
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
205144
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D205144 f(x+1)=xf(x) g(x+1)=loge(f(x+1)) ⇒g(x+1)=logex+logef(x) ⇒g(x+1)−g(x)=logex g′′(x+1)−g′′(x)=−1x2 g′′(2)−g′′(1)=−1 g′′(3)−g′′(2)=−14 g′′(4)−g′′(3)=−19 g′′(5)−g′′(4)=−116 g′′(5)−g′′(1)=−(1+14+19+116) ∴|g′′(5)−g′′(1)|=(144+36+16+916×9)=205144