wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f:SS where S=(0,) be a twice differentiable function such that f(x+1)=xf(x). If g:SR be defined as g(x)=logef(x), then the value of |g′′(5)g′′(1)| is equal to :

A
187144
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
197144
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
205144
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 205144
f(x+1)=xf(x)
g(x+1)=loge(f(x+1))
g(x+1)=logex+logef(x)
g(x+1)g(x)=logex
g′′(x+1)g′′(x)=1x2
g′′(2)g′′(1)=1
g′′(3)g′′(2)=14
g′′(4)g′′(3)=19
g′′(5)g′′(4)=116
g′′(5)g′′(1)=(1+14+19+116)
|g′′(5)g′′(1)|=(144+36+16+916×9)=205144

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adaptive Q9
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon