Let f:S→S where S=0,∞ be a twice differentiable function such that f(x+1)=xf(x). If g:S→R be defined as g(x)=logefx, then the value of g''(5)-g''(1) is equal to:
197144
187144
205144
1
Determine the value of g''(5)-g''(1)
Given that:
f(x+1)=xf(x)
g(x)=logefx
Now,
g(x+1)=logefx+1[Given]⇒g(x+1)=logexfx⇒g(x+1)=logex+logef(x)⇒g(x+1)-logef(x)=logex⇒g(x+1)-g(x)=logexlogef(x)=g(x)DoubleDifferentiatingw.r.tx:g''(x+1)-g''(x)=-1x2Letx=1,g''(2)-g''(1)=-1.....(1)Letx=2,g''(3)-g''(2)=-14.....(2)Letx=3,g''(4)-g''(3)=-19......(3)Letx=4,g''(5)-g''(4)=-116.....(4)(1)(2)+(3)+(4):g''(5)-g''(1)=-1-14-19-116g''(5)-g''(1)=205144
Therefore, the correct answer is Option (C).