Differentiation of Inverse Trigonometric Functions
Let fθ=sintan...
Question
Let f(θ)=sin(tan−1(sinθ√cos2θ));−π4<θ<π4, Then the value of d(d(tanθ))(f(θ)) is
Open in App
Solution
f(θ)=sin(tan−1(sinθ√cos2θ))⇒f(θ)=sin(tan−1(sinθ√2cos2θ−1))⇒f(θ)=sin(sin−1(sinθ√sin2θ+2cos2θ−1))⇒f(θ)=sin(sin−1(sinθ√cos2θ))⇒f(θ)=sin(sin−1(tanθ))=tanθ So, d(d(tanθ))(f(θ))=dd(tanθ)tanθ=1