Let f(θ)=sinθ(sinθ+sin3θ), then f(θ)
Here, f(θ)=sinθ(sinθ+sin3θ) =sinθ(sinθ+3sinθ−4sin3θ)=4sin2θ(1−sin2θ) =4sin2θcos2θ=(sin2θ)2 ∴ f(θ)≥0 for all real θ.
Let f(θ)=sinθ(sinθ+sin3θ),thenf(θ)
The quadratic equation tanθx2+2(secθ+cosθ)x+(tanθ+3√2cotθ) always has