CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f: W → W be defined as f(n) = n − 1, if is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers.

Open in App
Solution

It is given that:

f: W → W is defined as

One-one:

Let f(n) = f(m).

It can be observed that if n is odd and m is even, then we will have n − 1 = m + 1.

nm = 2

However, this is impossible.

Similarly, the possibility of n being even and m being odd can also be ignored under a similar argument.

∴Both n and m must be either odd or even.

Now, if both n and m are odd, then we have:

f(n) = f(m) ⇒ n − 1 = m − 1 ⇒ n = m

Again, if both n and m are even, then we have:

f(n) = f(m) ⇒ n + 1 = m + 1 ⇒ n = m

f is one-one.

It is clear that any odd number 2r + 1 in co-domain N is the image of 2r in domain N and any even number 2r in co-domain N is the image of 2r + 1 in domain N.

f is onto.

Hence, f is an invertible function.

Let us define g: W → W as:

Now, when n is odd:

And, when n is even:

Similarly, when m is odd:

When m is even:

Thus, f is invertible and the inverse of f is given by f—1 = g, which is the same as f.

Hence, the inverse of f is f itself.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Validity of Statements
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon