Let f(x)=1+eln(lnx)⋅ln(k2+25) and g(x)=1|x|−1. If limx→1f(x)g(x)=k(2sin2α+3cosβ+5), k>0 and α,β∈R, then which of the following statement(s) is (are) CORRECT?
A
k=5
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
sin10α+cos5βsin2α+cosβ=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
cos2β+sin4α=2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
sin2α>cosβ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are Ak=5 Bsin10α+cos5βsin2α+cosβ=1 Ccos2β+sin4α=2 f(x)=1+lnx⋅ln(k2+25) and g(x)=1|x|−1 limx→1f(x)g(x) =limx→1(1+lnx⋅ln(k2+25))1|x|−1 =limx→1(1+lnx⋅ln(k2+25))1x−1[1∞form] =exp(limx→1lnx⋅ln(k2+25)x−1) =eln(k2+25)=k2+25
∴k2+25=k(2sin2α+3cosβ+5) ⇒2sin2α+3cosβ+5=k+25k⋯(1) k+25k2≥√k⋅25k ⇒k+25k≥10 Maximum value of 2sin2α+3cosβ+5 is 10 if α=(2n+1)π2 and β=2nπ So, for equation (1), L.H.S. ≤10 So, both L.H.S. and R.H.S. should be equal to 10. k+25k=10 ⇒k2−10k+25=0 ⇒(k−5)2=0 ⇒k=5
sin2α=1 and cosβ=1 Hence, sin10α+cos5βsin2α+cosβ=1+11+1=1