Let f(x)=(1−x)2sin2x+x2 for all x∈R. Consider the statements:
P: There exists some x∈R such that f(x)+2x=2(1+x2).
Q:There exists some x∈R such that 2f(x)+1=2x(1+x).
Then
P is false and Q is true
f(x)=(1−x)2sin2sin2x+x2.∀x∈R
For statement P:
f(x)+2x=2(1+x2)
⇒(1−x)2sin2x+x2+2x=2+2x2
⇒(1−x)2sin2x=x2−2x+2=(x−1)2+1
⇒(1−x)2(sin2x−1)=1
⇒−(1−x)2cos2x=1
⇒(1−x)2cos2x=−1
So equation (i)will not have real solution.
So, P is wrong.
For statment Q:
2(1−x)2sin2x+2x2+1=2x+2x2
2(1−x)2sin2x=2x−1
2sin2x=2x−1(1−x)2.Leth(x)=2x−1(1−x)2−2sin2x
Clearly, h(0)=−1,limx→1−h(x)=+∞
So by IVT, equation (ii)will have solution. So, Q is correct.