Let f(x) = (1+x)n = nC0 + nC1 x2 + nC2 x3 ........nCn xn.
If f(1) = S1, f(w) = S2 and f(w2) = S3, find the value of nC0 + nC3 + nC6 + .......... in terms of S1, S2 and
S3.[W is the complex cube root of unity]
f(1) = nC0 + nC1 + nC2 + nC3 + nC4 + nC5 + nC6................
f(w) = nC0 + nC1 w + nC2 w2 + nC3 + nC4 w + nC5w2 + nC6..........
f(w2) = nC0 + nC1w2 + nC2w + nC3 + nC4w2 + nC5w + nC6...........
f(1) + f(w) + f(w2) = 3(nC0+nC3+nC6..............)
⇒ nC0 + nC3 + nC6......... = 13 (S1+S2+S3)