Given : f(x)=2x3−3(2+p)x2+12px+ln(16−p2)
Differentiating w.r.t. x, we get
f′(x)=6x2−6(2+p)x+12p
⇒f′(x)=6(x2−(2+p)x+2p)
For maximum or minimum, f′(x)=0
⇒x2−(2+p)x+2p=0
⇒x=2,p
Since f(x) has exactly one local maximum and one local minimum, therefore p≠2.
Also, 16−p2>0
⇒p2−16<0
⇒p∈(−4,4)
Possible integral values of p are −3,−2,−1,0,1,3
Hence, number of possible integral values of p is 6.