Given : f(x)=2x3−x⇒f(1)=1
Differentiating both sides w.r.t. x
f′(x)=6x2−1⇒f′(1)=5
Differentiating both sides w.r.t. x
f′′(x)=12x⇒f′′(1)=12
and f−1(x)=g(x)⇒g−1(x)=f(x)
∴g(f(x))=x
Differentiating both sides w.r.t. x
g′(f(x))⋅f′(x)=1
⇒g′(f(x))=1f′(x)
Differentiating both sides w.r.t. x
⇒g′′(f(x))⋅f′(x)=−f′′(x)[f′(x)]2
⇒g′′(f(x))=−f′′(x)[f′(x)]3
⇒g′′(f(1))=−f′′(1)[f′(1)]3
⇒g′′(1)=−1253=−12125
∴4−125g′′(1)=16