The correct option is A 12
f(x)=3x2−7x2+5x+6 in [0,2]
f′(x)=9x2−14x+5
and f′′(x)=18x−14
Critical Points are f′(x)=0⇒x=1 and dfrac59
∵f′′(1)=+ve so x=1 in point of minimum
f′′(59)=−ve so x=59 is point of maximum and value
=f(59)=3[59]3−7[59]2+5[57]+6
=7.1
But maximum value can also occur at corner points.
So
f(2)=3(2)3−7(2)2+5(2)+6=12
So absolute maximum value =12.