Let f(x)=4x+8cosx−4ln{cosx(1+sinx)}+tanx−2secx−6. If f(x) is strictly increasing ∀x∈(0,a) then
A
a=π6
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
a=π3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
a=π2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aa=π6 f′(x)=4−8sinx−4−sinx+cos2x−sin2xcosx(1+sinx)+sec2x−secxtanx=4(1−2sinx)−4secx(1−2sinx)+sec2x(1−2sinx)⇒f′(x)=(secx−2)2(1−2sinx)
If f′(x)>0∀x∈(0,a) then f(x) is increasing in (0,a)⇒a=π6