1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Standard Formulae - 2
Let fx=A sinπ...
Question
Let
f
(
x
)
=
A
sin
(
π
x
2
)
+
B
,
f
′
(
1
2
)
=
√
2
and
1
∫
0
f
(
x
)
d
x
=
2
A
π
, then
A
and
B
are
A
π
2
,
π
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
2
π
,
3
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
0
,
−
4
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
4
π
,
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is
D
4
π
,
0
f
(
x
)
=
A
sin
(
π
x
2
)
+
B
⇒
f
′
(
x
)
=
A
cos
(
π
x
2
)
⋅
π
2
⇒
f
′
(
1
2
)
=
A
cos
(
π
4
)
⋅
π
2
=
√
2
⇒
A
=
4
π
Now,
1
∫
0
f
(
x
)
d
x
=
2
A
π
⇒
1
∫
0
[
A
sin
(
π
x
2
)
+
B
]
d
x
=
2
A
π
⇒
−
2
A
π
cos
[
π
x
2
]
1
0
+
B
[
x
]
1
0
=
2
A
π
⇒
B
=
0
Hence
A
=
4
π
and
B
=
0
Suggest Corrections
0
Similar questions
Q.
If
f
(
x
)
=
A
sin
(
π
x
2
)
+
B
,
f
′
(
1
2
)
=
√
2
and
∫
1
0
f
(
x
)
d
x
=
2
A
π
, then
A
and
B
are
Q.
If
f
(
x
)
=
A
sin
(
π
x
2
)
+
B
,
f
′
(
1
2
)
=
√
2
and
∫
1
0
f
(
x
)
d
x
=
2
A
π
,
then the constant A and B are
Q.
If
f
(
x
)
=
A
sin
(
π
x
2
)
+
B
,
f
′
(
1
2
)
=
√
2
and
∫
1
0
f
(
x
)
d
x
=
2
A
π
,
then the constants
A
and
B
are
Q.
If
f
(
x
)
=
A
sin
(
π
x
2
)
+
B
,
f
(
1
2
)
=
√
2
and
∫
1
0
f
(
x
)
d
x
=
2
A
π
, then the constant
A
and
B
are
Q.
Let
f
:
(
−
1
,
1
)
→
B
, be a function defined by
f
(
x
)
=
t
a
n
−
1
2
x
1
−
x
2
, then f is both one - one and onto when B is the interval
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Standard Formulae 2
MATHEMATICS
Watch in App
Explore more
Standard Formulae - 2
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app