The correct option is
A 512
Let I=∫4−4f(x2)dx
∴I=∫0−4f(x2)dx+∫40f(x2)dx
∴I=∫04f((−x)2)dx+∫40f(x2)dx
∴I=2∫40f(x2)dx
∴I=2∫40(4x3−g(4−x))dx (from given equation)
∴I=2∫404x3dx−2∫40g(4−x)dx
∴I=2∫404x3dx−2∫20g(4−x)dx−2∫42g(4−x)dx
∴I=2∫404x3dx−2∫20g(4−x)dx−2∫42g(4−x)dx ... (1)
Let I1=∫42g(4−x)dx
Now, consider (4−x)=y which is substituted in I1
∴I1=∫20g(y)dy (inverting limits and dy both provide negative signs)
Substituting I1 in (1), we have
I=2∫404x3dx−2∫20g(4−x)dx−2∫20g(y)dy
Also, g(4−x)=−g(x) from given equation and g(y)=g(x) from variable substitution
∴I=2∫404x3dx−2∫20−g(x)dx−2∫20g(x)dx
∴I=2∫404x3dx
∴I=512
This is the required answer.