I=4∫−4f(x2)dx=24∫0f(x2)dx ⋯(i)
(∵f(x2)is even function)
Using property
b∫af(x)dx=b∫af(a+b−x)dx
I=24∫0f(4−x)2dx ⋯(ii)
Adding (i) and (ii):
⇒2I=24∫0[f(x2)+f(4−x)2]dx ⋯(iii)
Given, f(x2)+g(4−x)=4x3 ⋯(iv)
Replacing x→(4−x):
⇒f((4−x)2)+g(x)=4(4−x)3 ⋯(v)
Adding (iv) and (v):
⇒f(x2)+f((4−x)2)+g(x)+g(4−x)=4[x3+(4−x)3]⇒f(x2)+f((4−x)2)=4[x3+(4−x)3]⋯(vi)
From (iii) & (vi)⇒I=44∫0[x3+(4−x)3]dx=512