Let f(x)=ax2−2+1x where α is a real constant. The smallest α for which f(x)≥0 for all x > 0 is
f(x)=αx3−2x+1x≥0 ∀xϵ(0,∞)⇒αx3−2x+1≥0 ∀xϵ(0,∞)Now Let ϕ(x)=αx3−2x+1ϕ1(x)=3αx2−2=0 x=±√23αSo Graph of ϕ(x)
ϕ(√23α)≥0√23α[α23α−2]+1≥0√23α[−43]+1≥0√23α≤34⇒23α≤916=3227≤α