Let f(x)=ax2+bx+c be such that f(1)=3,f(−2)=λ and f(3)=4. If f(0)+f(1)+f(−2)+f(3)=14, then λ is equal to
Open in App
Solution
f(1)=a+b+c=3⋯(i) f(3)=9a+3b+c=4⋯(ii) f(0)+f(1)+f(−2)+f(3)=14
OR c+3+(4a−2b+c)+4=14
OR 4a−2b+2c=7⋯(iii)
From (i) and (ii) 8a+2b=1⋯(iv)
From (iii) - (2)×(i) ⇒2a−4b=1⋯(v)
From (iv) and (v) a=16,b=−16 and c=3 f(−2)=4a−2b+c =46+26+3=4