Let f(x) be a continuous and not a constant function of all x in its domain, such that (f(x))2=x∫0f(t)4sin2t−4sin2t+4dt and f(0)=0, then
A
f(3π4)=log(12)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
f(π4)=log(32)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
f(π4)=log(54)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
f(π2)=2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Bf(π4)=log(32) (f(x))2=∫x0f(t)4sin2t−4sin2t+4dt,f(0)=0
sin2t=2tant1+tan2t−4sin2t+4=4(1−sin2t)=4cos2t=4sec2t (f(x))2=∫x0f(t)42tantsec2t+4sec2tdt (f(x))2=∫x0f(t)2sec2t2+tantdt
Taking derivative 2f(x)×f′(x)=f(x)×2sec2x2+tanx f′(x)=sec2x2+tanxdx
On integrating both the sides, we have - ∫f′(x)dx=∫sec2x2+tanxdx
Let tanx=t⇒sec2xdx=dt ⇒f(x)=log|2+tanx|+c ∵f(0)=0⇒c=−log2. ∴f(x)=log|2+tanx|−log2 f(π4)=log3−log2=log32 f(π2)≠2 f(3π4)=log|2−1|−log2=log12