Let f(x) be a continuous function which satisfies f(x2+1)=2f(2x)−1 & f(x)>0∀xεR Then limx→1f(x) is-
If the function f(x) satisfies limx→1f(x)−2x2−1=π, evaluate limx→1 f(x).
If the function f(x) satisfies limx→1f(x)−2x2−1=π,then limx→1f(x)=