Let f(x) be a differentiable function on [0,8] such that f(1)=6,f(2)=13,f(3)=8,f(4)=−2,f(5)=5,f(6)=15, and f(7)=−13 If the minimum number of roots of the equation f′(x)−f′(x)(f(x))2=0 is λ then λ11 is
Open in App
Solution
f′(x)=0,f(x)=1,f(x)=−1 f′(x)=0 for atleast 4 points f(x)=1 for atleast 5 points f(x)=−1 for atleast 2 points
So f′(x)=f′(x)f2(x)=0 has atleast 11 roots.
So λ11=1111=1