The correct option is B f(x) is a odd function
Given : f(x+y2)=f(x)+f(y)2⋯(1)
We know that
f′(x)=limh→0f(x+h)−f(x)h⇒f′(x)=limh→0f(2x+2h2)−f(x)h⇒f′(x)=limh→0f(2x)+f(2h)2−f(x)h
Putting x→2x,y=0 in equation (1), we get
f(x)=f(2x)2,
⇒f′(x)=limh→0f(2x)+f(2h)2−f(2x)2h⇒f′(x)=limh→0f(2h)2h⇒f′(x)=limh→0f(2h)−f(0)2h⇒f′(x)=f′(0)=k⇒f(x)=kx+c
As f(0)=0, so
f(x)=kx
Which is odd function.
Now,
I=2π∫0(kx−sinx)2dx⇒I=2π∫0(k2x2−2kxsinx+sin2x)dx⇒I=k2[x33]2π0−2k2π∫0xsinx dx+2π∫0sin2x dx⇒I=8π3k23−2k2π∫0xsinx dx+π
Now,
I1=2π∫0xsinx dx⇒I1=[−xcosx+sinx]2π0⇒I1=−2π
Therefore,
I=(8π33)k2+(4π)k+π
This is a quadratic in k and its minimum value occurs when
k=−4π⋅316π3=−34π2
So,
f(x)=−3x4π2∴f(–4π2)=3