an=limx→∞x2(f(an−1x)−f(0))2
Putting x=an−1h
If x→∞, then h→0
an=limh→0(an−1h)2(f(h)−f(0))2=(an−1)2limh→0(f(h)−f(0)h)2⇒an=[an−1⋅f′(0)]2⇒an=(an−1)2 (∵f′(0)=1)
Now, an=(an−1)2
Hence, a2=a21=22;
a3=a22=24;
a4=a23=28 and so on.
∴10∏i=1ai=2(1+2+22+23+⋯+29)=2⎛⎜⎝ 210−12−1⎞⎟⎠=21023
∴k=1023