wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x) be a differentiable function such that f(x)+f(x)=4xexsin2x and f(0)=0. If limnnk=1f(kπ)=Pπeπ(eπ1)2, then 94P is

Open in App
Solution

dydx+y=4xexsin2x
P(x)=1
I.F.=eP(x)dx=ex
ex.y=ex(4xexsin2x)dx
ex.y=4xsin2x dx
ex.y=sin2x2xcos2x+c
f(0)=0c=0
f(x)=y=(sin2x2xcos2x)ex
f(kπ)=(sin2kπ2kπcos2kπ)ekπ
f(kπ)=2kπekπ=2πS, [S=kekπ]
limnnk=1f(kπ)=2π×limnS

S=1.eπ+2.e2π+3.e3π+eπS=e2π+2.e3π+(1eπ)S=eπ+e2π+e3π+
(1eπ)S=eπ1eπ
S=eπ(1eπ)2=eπ(eπ1)2
k=1f(kπ)=2πeπ(eπ1)2=Pπeπ(eπ1)2
P=2
94×P=94×2=4.50


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative from First Principles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon