dydx+y=4xe−xsin2x
P(x)=1
I.F.=e∫P(x)dx=ex
ex.y=∫ex(4xe−xsin2x)dx
⇒ex.y=4∫xsin2x dx
⇒ex.y=sin2x−2xcos2x+c
∵f(0)=0⇒c=0
⇒f(x)=y=(sin2x−2xcos2x)e−x
⇒f(kπ)=(sin2kπ−2kπcos2kπ)e−kπ
⇒f(kπ)=−2kπe−kπ=−2πS, [S=ke−kπ]
limn→∞n∑k=1f(kπ)=−2π×limn→∞S
S=1.e−π+2.e−2π+3.e−3π+⋯e−πS=e−2π+2.e−3π+⋯(1−e−π)S=e−π+e−2π+e−3π+⋯∞
(1−e−π)S=e−π1−e−π
⇒S=e−π(1−e−π)2=eπ(eπ−1)2
∴∞∑k=1f(kπ)=−2πeπ(eπ−1)2=−Pπeπ(eπ−1)2
⇒P=2
∴94×P=94×2=4.50