wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Let f(x) be a function defined as f(x)=a|x|+b. If f(6)=5 and f(3)=4, then which of the following is/are correct?

A
f(x)=3|x|+13
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
ab=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
Domain of f(x) is R
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
Range of f(x)=[3,)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
B ab=1
C Domain of f(x) is R
D Range of f(x)=[3,)
f(x)=a|x|+b
f(6)=56a+b=5 ...(1)
f(3)=43a+b=4 ...(2)
On solving (1) and (2), we get
a=13,b=3

f(x)=|x|3+3
Clearly, domain of f(x) is R

Since, |x|0 xR
|x|3+33
Therefore, range of f(x)=[3,)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Some Functions and Their Graphs
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon