Let f(x) be a function defined by f(x)={3|x|+2x,x≠00,x=0 Show that limx→0 f(x)does not exist.
limx→0−f(x)=limx→0−3x−x+2x=limx→0−3xx=3
[∵asx→0−,|x|=−x]limx→0+f(x)=limx→0+3xx+2x=1
[∵asx→0−,|x|=−x]
thus, limx→0+f(x)≠limx→0+f(x)
∴limx→0f(x) does not exist.